Supervized Mixture of PLDA Models for Cross-Channel Speaker Verification
نویسندگان
چکیده
This paper presents a development of previous research by P.Kenny, which deals with using a supervised PLDA mixture of two gender-dependent speaker verification systems under the conditions of gender uncertainty. We propose using PLDA mixtures for speaker verification in different channels. However, in contrast to creating a gender-independent mixture, the optimal decision for training a channel-independent mixture for two channels in our task was mixing three channel-dependent PLDA systems. The experiments conducted on different conditions of NIST 2010 showed the superior robustness of the PDLA system mixture compared to each of its component PDLA subsystems not only in EER value but also in the stability of the decision threshold. The latter fact is very significant for using this approach not just for obtaining a good NIST SRE actual cost but also for commercial applications.
منابع مشابه
Comparison between supervised and unsupervised learning of probabilistic linear discriminant analysis mixture models for speaker verification
We present a comparison of speaker verification systems based on unsupervised and supervised mixtures of probabilistic linear discriminant analysis (PLDA) models. This paper explores current applicability of unsupervised mixtures of PLDA models with Gaussian priors in a total variability space for speaker verification. Moreover, we analyze the experimental conditions under which this applicatio...
متن کاملSNR-invariant PLDA modeling for robust speaker verification
In spite of the great success of the i-vector/PLDA framework, speaker verification in noisy environments remains a challenge. To compensate for the variability of i-vectors caused by different levels of background noise, this paper proposes a new framework, namely SNR-invariant PLDA, for robust speaker verification. By assuming that i-vectors extracted from utterances falling within a narrow SN...
متن کاملNoise robust speaker verification via the fusion of SNR-independent and SNR-dependent PLDA
While i-vectors with probabilistic linear discriminant analysis (PLDA) can achieve state-of-the-art performance in speaker verification, the mismatch caused by acoustic noise remains a key factor affecting system performance. In this paper, a fusion system that combines a multi-condition SNR-independent PLDA model and a mixture of SNR-dependent PLDA models is proposed to make speaker verificati...
متن کاملSNR-dependent mixture of PLDA for noise robust speaker verification
This paper proposes a mixture of SNR-dependent PLDA models to provide a wider coverage on the i-vector spaces so that the resulting i-vector/PLDA system can handle test utterances with a wide range of SNR. To maximise the coordination among the PLDA models, they are trained simultaneously via an EM algorithm using utterances contaminated with noise at various levels. The contribution of a train...
متن کاملMixture of PLDA Models in i-vector Space for Gender-Independent Speaker Recognition
The Speaker Recognition community that participates in NIST evaluations has concentrated on designing genderand channel-conditioned systems. In the real word, this conditioning is not feasible. Our main purpose in this work is to propose a mixture of Probabilistic Linear Discriminant Analysis models (PLDA) as a solution for making systems independent of speaker gender. In order to show the effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012